Superstatistical generalisations of Wishart-Laguerre ensembles of random matrices

نویسنده

  • A. Y. Abul-Magd
چکیده

Using Beck and Cohen’s superstatistics, we introduce in a systematic way a family of generalised Wishart-Laguerre ensembles of random matrices with Dyson index β = 1,2, and 4. The entries of the data matrix are Gaussian random variables whose variances η fluctuate from one sample to another according to a certain probability density f(η) and a single deformation parameter γ. Three superstatistical classes for f(η) are usually considered: χ-, inverse χand log-normal-distribution. While the first class, already considered by two of the authors, leads to a powerlaw decay, we here introduce and solve exactly a superposition of Wishart-Laguerre ensembles with inverse χdistribution. The corresponding macroscopic spectral density is given by a γ-deformation of the semi-circle and Marčenko-Pastur laws, on a non-compact support with exponential tails. Using a Wigner surmise, we also compute the microscopic level spacing distribution, which displays a stretched exponential tail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power-law deformation of Wishart-Laguerre ensembles of random matrices

We introduce a one-parameter deformation of the Wishart-Laguerre or chiral ensembles of positive definite random matrices with Dyson index β = 1, 2 and 4. Our generalised model has a fat-tailed distribution while preserving the invariance under orthogonal, unitary or symplectic transformations. The spectral properties are derived analytically for finite matrix size N ×M for all three β, in term...

متن کامل

Approximation of Rectangular Beta-Laguerre Ensembles and Large Deviations

Let λ1, · · · , λn be random eigenvalues coming from the beta-Laguerre ensemble with parameter p, which is a generalization of the real, complex and quaternion Wishart matrices of parameter (n, p). In the case that the sample size n is much smaller than the dimension of the population distribution p, a common situation in modern data, we approximate the beta-Laguerre ensemble by a beta-Hermite ...

متن کامل

Asymptotic Correlations for Gaussian and Wishart Matrices with External Source

We consider ensembles of Gaussian (Hermite) and Wishart (Laguerre) N ×N hermitian matrices. We study the effect of finite rank perturbations of these ensembles by a source term. The rank r of the perturbation corresponds to the number of non-null eigenvalues of the source matrix. In the perturbed ensembles, the correlation functions can be written in terms of kernels. We show that for all N , t...

متن کامل

Matrix Models for Beta Ensembles

This paper constructs tridiagonal random matrix models for general (β > 0) β-Hermite (Gaussian) and β-Laguerre (Wishart) ensembles. These generalize the well-known Gaussian and Wishart models for β = 1, 2, 4. Furthermore, in the cases of the β-Laguerre ensembles, we eliminate the exponent quantization present in the previously known models. We further discuss applications for the new matrix mod...

متن کامل

Asymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles

We consider properties of determinants of some random symmetric matrices issued from multivariate statistics: Wishart/Laguerre ensemble (sample covariance matrices), Uniform Gram ensemble (sample correlation matrices) and Jacobi ensemble (MANOVA). If n is the size of the sample, r ≤ n the number of variates and Xn,r such a matrix, a generalization of the Bartlett-type theorems gives a decomposi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009